

April 16th 2024

Materializing your metal additive manufacturing journey

Set an ambition goal which could be used as a North Pole star across the organization

AMSL machine with a targeted AM content of 30%?

GE Designated: NON-PUBLIC - may release with approval only

Metal AM examples

NO additive part

LEAP

28 parts

GE9X

250 parts

Catalyst

30% of engine weight (targeted)

Reduction of assemblies

7-to-1 assembly reduction

~300-to-1 part reduction

GE Designated: NON-PUBLIC -

LEAP fuel nozzle tip*

Source: GE Aviation

25% WEIGHT REDUCTION

*LEAP is a trademark of CFM International, a 50/50 JV between GE and Safran Aircraft Engines.

5XMORE

DURABLE

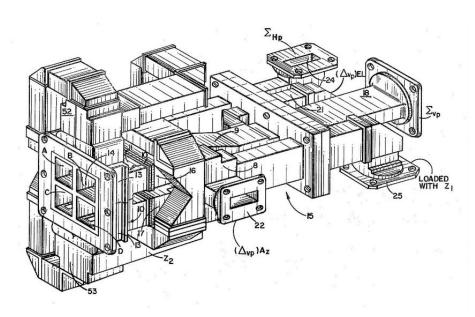
Comparison versus TAPS fuel nozzle

System improvement* for the Advanced Turboprop

Combustor test schedule reduced from 12 months to 6 months

5% WEIGHT REDUCTION

85512 PARTS


* Weight reduction completely attributed by additive; fuel burn improvement is partially attributed by additive

Source: GE Aviation

Satellite Optisys' RF antenna: 100-parts-to-1 simplification

Optisys redesigned a large, multi-part antenna assembly (left) into a palm-sized, lighter, one-piece, 3D-printed metal antenna (right). The component was manufactured with a Concept Laser Mlab machine to provide optimum radio frequency (RF) performance.

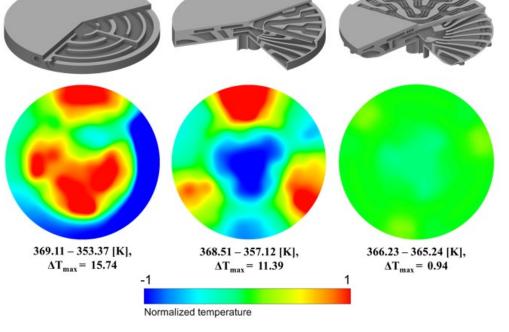
95% weight reduction

75% reduction in non-recurring costs

11-to-2 months lead time reduction

100-to-1 part reduction

20-25% production costs reduction


It's easy to add features to an existing AM design, easier to assemble the finished components and, long-term, you have less testing, maintenance and service when you have fewer parts."

> **ROB SMITH** COO, Optisys

[Conventional] [Architecture] [Final]

DfAM redegin & optimization of a cooling chuck for wafers

Getting a uniform cooling pattern thanks to complex channels, with only 1 inlet/outlet only.

Addworks - A staged approach to build the plan and work the plan

The GE Additive AddWorks difference

- OEM and technology power user
- OEM of multiple modalities
- OEM of powder
- Producer of high-volume parts
- Qualified in highly regulated environments
- Detailed cost modeling based on production data
- Deep materials, design and manufacturing expertise in multiple modalities

A staged approach to build the plan and work the plan

Awareness & Education

Technology Awareness

- Machines
- Materials
- Part Design
- Quality
- Cost Management

Candidate Identification

- Components
- Metal AM Requirements for ASML
- Metal AM Adoption Roadmap

Development of Applications

Put theoretical knowledge to practice

Validate assumptions

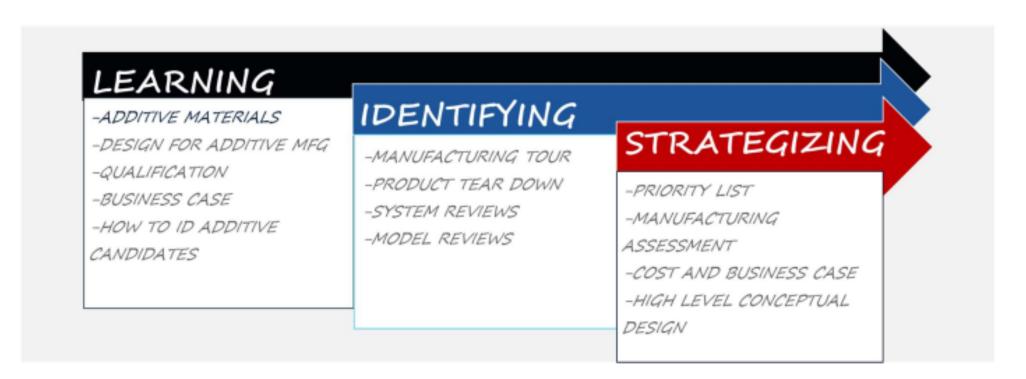
Develop solutions to risks & requirements

Develop technical solutions to meet key application requirements

- Part design
- Build Job Design
- Material Properties
- Post Processing
- Inspections & Verification

Process & Industrialization

Operation of machine in manufacturing facility

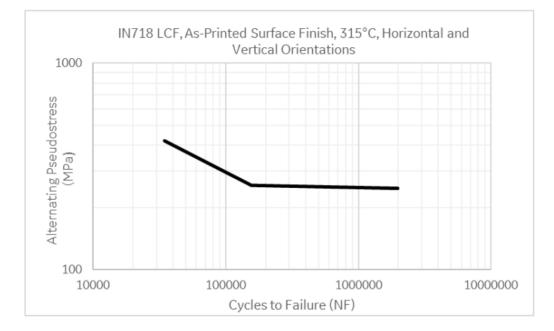

Process & procedures for in-house production or purchasing of metal AM components

- Part performance
- Machine performance
- Material feedstock
- Facility operation
- Inspection procedures

Characterisation & validation of procedures vs requirements

Education & Awareness – Discovery Workshop

Data-driven support to engineering design



Static load – mechanical characteristics

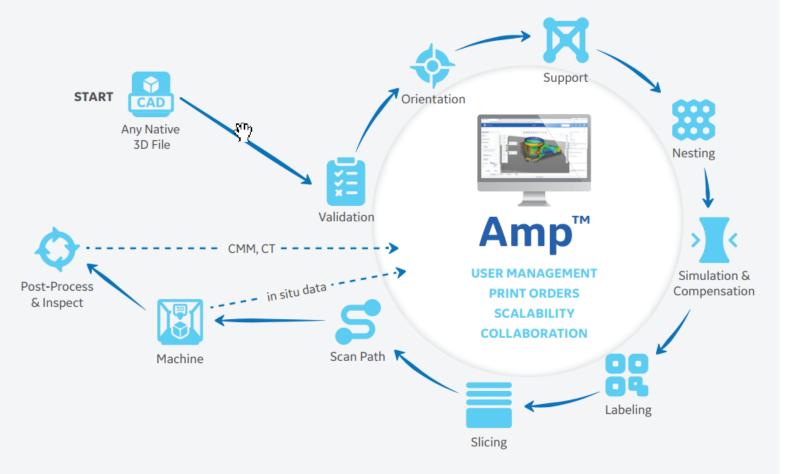
Test Temperature: RT	Modulus of Elasticity (GPa)		0.2% Yield Strength (MPa)		Ultimate Tensile Strength (MPa)	
Thermal State	H	V	Н	V	Н	V
As-Built	185	180	755	705	1065	1040
SOLN+AGE	195	195	1315	1285	1480	1450
VSR+HIP+SOLN+AGE	205	200	1100	1105	1355	1350

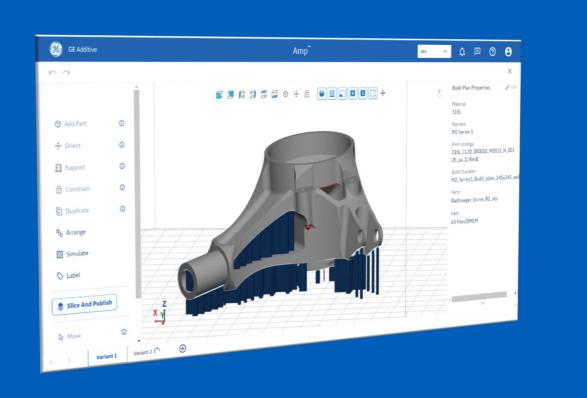
Ti64 printed metal properties 50µm, M2

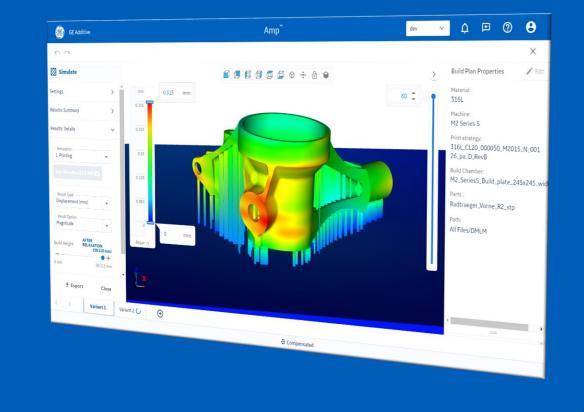
Dynamic load – LC Fatigue

IN718 printed metal properties 50µm, M2 - LCF

Example of GE provided data for customer engineering mechanical design

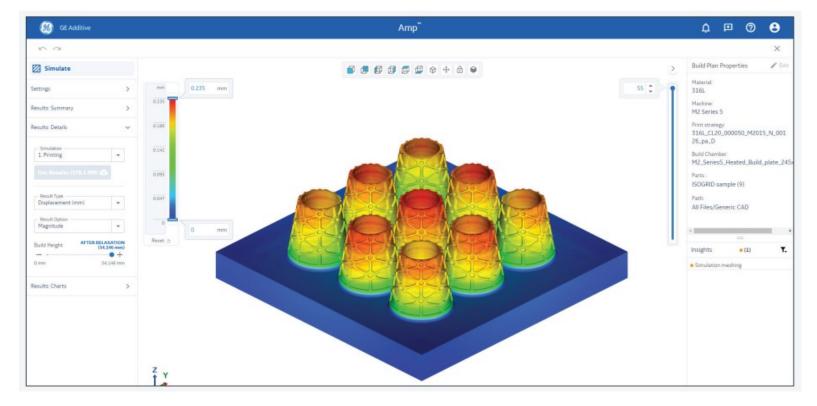

AMP software accelerates the metal AM developments


With Amp


One integrated, data-centric solution

- Uses native 3D files rather than STLs
- Enables more tasks and people to work simultaneously through a flexible work process
- Provides built-in estimates of cost and time
- Significantly reduces trial and error
- Creates a complete digital thread

GE Additive's Amp[™] software platform gets you to industrialization faster

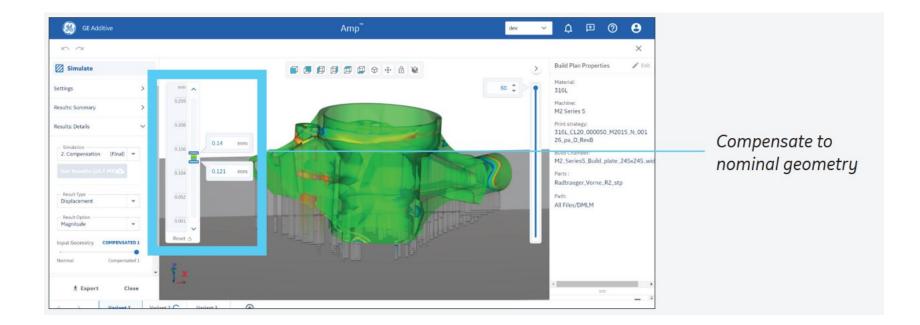


Simulation & Inspection based Compensation

Simulation – estimate the deformation of the printed parts

in order to reduce trial & error and ultimately to reduce the time and cost from design to print

Without Amp


lengthy trial-and-error period testing different printing parameters to work out the right combination that delivers a suitable build plan for production.

With Amp

The software predicts thermal, mechanical stresses, enabling engineers to arrange parts and compensate for distortions.

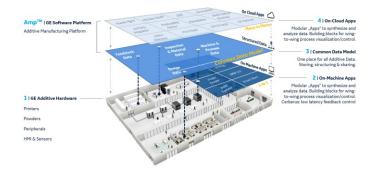
Compensation – amend the part or build geometry

and eliminate CAD amendments to converge fast to an acceptable printed outcome

Without Amp

Manipulate the CAD geometry to compensate for distortions seen in the printing process, contributing to the tiresome trial-and-error process that leads to printing a successful part.

With Amp


Amp iteratively compensates until it finds a solution that produces a successful print

Reduce trial and error and pave a smoother, more cost-effective path to full metal additive production.

Digital Twin of the Additive Process

Reduce time & effort of physical test prints – get to first print right

Industrialize Additive

Embed GE knowledge & experience for our customers benefit

An easy-to-use, unsophisticated and experience-rich simulation & compensation software solution

GE Designated: NON-PUBLIC - may release with approval only

